Propositional Logic

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Wrapping parentheses: (...)
- Sentences are combined by connectives:

```
    ∧ ...and [conjunction]
    ∨ ...or [disjunction]
    ⇒ ...implies [implication / conditional]
    ⇔ ...is equivalent [biconditional]
    ¬ ...not [negation]
```

• Literal: atomic sentence or negated atomic sentence

Examples of PL sentences

- P means "It is hot."
- Q means "It is humid."
- R means "It is raining."
- (P ∧ Q) → R
 "If it is hot and humid, then it is raining"
- Q → P
 "If it is humid, then it is hot"
- A better way:

```
Hot = "It is hot"
Humid = "It is humid"
Raining = "It is raining"
```

Propositional logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the **semantics** of each propositional symbol:
 - P means "It is hot"
 - Q means "It is humid"
 - R means "It is raining"
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then (S \vee T), (S \wedge T), (S \rightarrow T), and (S \leftrightarrow T) are sentences
 - A sentence results from a finite number of applications of the above rules

Some terms

- The meaning or semantics of a sentence determines its interpretation.
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its truth value (True or False).
- A model for a KB is a "possible world"
 (assignment of truth values to propositional symbols) in which each sentence in the KB is True.

More terms

- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or how the semantics are defined. Example: "It's raining or it's not raining."
- An inconsistent sentence or contradiction is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- Pentails Q, written P |= Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.

Truth tables

And				
р	q	$p \cdot q$		
T	T	T		
T	F	F		
F	T	F		
F	F	F		

p	q	$p \lor q$
\overline{T}	T	T
T	F	T
F	T	T
F	F	F

4	men
q	$p \rightarrow q$

74

P	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

р	$\sim p$
T	F
F	T

Truth tables II

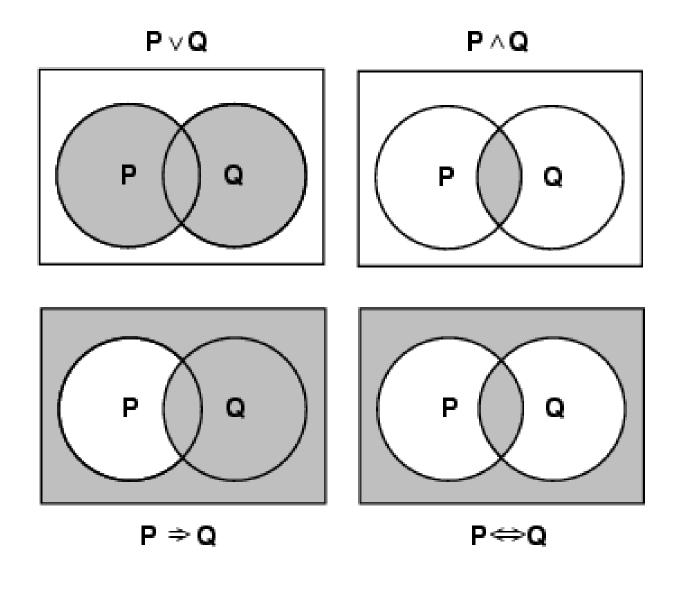
The five logical connectives:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	Тпие	False	False	Тrue	Тrue
False	Тrие	True	False	True	Тrие	False
Тrие	False	False	False	True	False	False
Тrие	Тrие	False	True	True	Тrue	Тrue

A complex sentence:

P	Н	$P \lor H$	$(P \vee H) \wedge \neg H$	$((P \lor H) \land \neg H) \Rightarrow P$
False	False	False	False	Тrue
False	Тпие	Тrие	False	Тrue
Тrие	False	Тrие	Тrие	Тrue
Тrue	Тrue	Тrие	False	Тrue

Models of complex sentences



Inference rules

- Logical inference is used to create new sentences that logically follow from a given set of predicate calculus sentences (KB).
- An inference rule is sound if every sentence X produced by an inference rule operating on a KB logically follows from the KB. (That is, the inference rule does not create any contradictions)
- An inference rule is complete if it is able to produce every expression that logically follows from (is entailed by) the KB. (Note the analogy to complete search algorithms.)

Sound rules of inference

- Here are some examples of sound rules of inference
 - A rule is sound if its conclusion is true whenever the premise is true
- Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	А, В	$A \wedge B$
And Elimination	$A \wedge B$	Α
Double Negation	¬ ¬A	Α
Unit Resolution	$A \vee B$, $\neg B$	Α
Resolution	$A \vee B$, $\neg B \vee C$	$A \lor C$

Soundness of modus ponens

A	В	$\mathbf{A} \rightarrow \mathbf{B}$	OK?
True	True	True	√
True	False	False	√
False	True	True	√
False	False	True	√

Soundness of the resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg \beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тrue	False
False	False	True	False	Тrue	Тrue
False	Тrue	False	Тrие	False	False
<u>False</u>	<u>Тrие</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
Тrие	<u>False</u>	<u>False</u>	True	<u>Тrие</u>	<u>True</u>
<u>Тrие</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>Тrие</u>	<u>True</u>
Тrие	Тrие	False	Тrие	False	Тrие
<u>Тrие</u>	<u>Тrие</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>Тrие</u>

Proving things

- A proof is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.
- The last sentence is the theorem (also called goal or query) that we want to prove.
- Example for the "weather problem" given above.

```
1 Humid
                          Premise
                                                           "It is humid"
2 Humid→Hot
                                     Premise
                                                                      "If it is humid, it is hot"
3 Hot
                          Modus Ponens(1,2)
                                                           "It is hot"
4 (Hot∧Humid)→Rain
                                     Premise
                                                                      "If it's hot & humid, it's
   raining"
5 Hot Aumid
                                     And Introduction(1,2)
                                                           "It is hot and humid"
6 Rain
                          Modus Ponens(4,5)
                                                           "It is raining"
```

Horn sentences

A Horn sentence or Horn clause has the form:

$$P1 \land P2 \land P3 \dots \land Pn \rightarrow Q$$

or alternatively

$$\neg P1 \lor \neg P2 \lor \neg P3 \dots \lor \neg Pn \lor Q$$

$$(P \to Q) = (\neg P \lor Q)$$

where Ps and Q are non-negated atoms

- To get a proof for Horn sentences, apply Modus
 Ponens repeatedly until nothing can be done
- We will use the Horn clause form later

Entailment and derivation

Entailment: KB |= Q

- Q is entailed by KB (a set of premises or assumptions)
 if and only if there is no logically possible world in
 which Q is false while all the premises in KB are true.
- Or, stated positively, Q is entailed by KB if and only if the conclusion is true in every logically possible world in which all the premises in KB are true.

Derivation: KB |- Q

 We can derive Q from KB if there is a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- If Q is derived from a set of sentences KB using a given set of rules of inference, then Q is entailed by KB.
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid.

Completeness: If KB |= Q then KB |- Q

- If Q is entailed by a set of sentences KB, then Q can be derived from KB using the rules of inference.
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises.

Propositional logic is a weak language

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL) is expressive enough to concisely represent this kind of information

FOL adds relations, variables, and quantifiers, e.g.,

- "Every elephant is gray": \forall x (elephant(x) \rightarrow gray(x))
- "There is a white alligator": ∃ x (alligator(X) ^ white(X))

Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

Example II

• In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might have:

```
P = "person"; Q = "mortal"; R = "Confucius"
```

• so the above 3 sentences are represented as:

$$P \rightarrow Q; R \rightarrow P; R \rightarrow Q$$

- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal"
- To represent other individuals we must introduce separate symbols for each one, with some way to represent the fact that all individuals who are "people" are also "mortal"

Summary

- The process of deriving new sentences from old one is called inference.
 - Sound inference processes derives true conclusions given true premises
 - Complete inference processes derive all true conclusions from a set of premises
- A valid sentence is true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then—given its premise—its consequent can be derived
- Different logics make different commitments about what the world is made of and what kind of beliefs we can have regarding the facts
 - Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base engineer more freedom
- Propositional logic commits only to the existence of facts that may or may not be the case in the world being represented
 - It has a simple syntax and simple semantics. It suffices to illustrate the process of inference
 - Propositional logic quickly becomes impractical, even for very small worlds

Thank You